Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108519, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125014

RESUMO

Cartilage degeneration, typically viewed as an irreversible, vicious cycle, sees a significant reduction in two essential biophysical cues: the well-established hydrostatic pressure (HP) and the recently discovered transient temperature increase. Our study aimed to evaluate the combined influence of these cues on maintaining cartilage homeostasis. To achieve this, we developed a customized bioreactor, designed to mimic the specific hydrostatic pressure and transient thermal increase experienced during human knee physiological activities. This system enabled us to investigate the response of human 3D-cultured chondrocytes and human cartilage explants to either isolated or combined hydrostatic pressure and thermal stimuli. Our study found that chondroinduction (SOX9, aggrecan, and sulfated glycosaminoglycan) and chondroprotection (HSP70) reached maximum expression levels when hydrostatic pressure and transient thermal increase acted in tandem, underscoring the critical role of these combined cues in preserving cartilage homeostasis. These findings led us to propose a refined model of the vicious cycle of cartilage degeneration.

2.
iScience ; 26(8): 107491, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599834

RESUMO

Chondrocytes respond to various biophysical cues, including oxygen tension, transient thermal signals, and mechanical stimuli. However, understanding how these factors interact to establish a unique regulatory microenvironment for chondrocyte function remains unclear. Herein, we explore these interactions using a joint-simulating bioreactor that independently controls the culture's oxygen concentration, evolution of temperature, and mechanical loading. Our analysis revealed significant coupling between these signals, resulting in a remarkable ∼14-fold increase in collagen type II (COL2a) and aggrecan (ACAN) mRNA expression. Furthermore, dynamic thermomechanical stimulation enhanced glycosaminoglycan and COL2a protein synthesis, with the magnitude of the biosynthetic changes being oxygen dependent. Additionally, our mechanistic study highlighted the crucial role of SRY-box transcription factor 9 (SOX9) as a major regulator of chondrogenic response, specifically expressed in response to combined biophysical signals. These findings illuminate the integration of various mechanobiological cues by chondrocytes and provide valuable insights for improving the extracellular matrix content in cartilage-engineered constructs.

3.
iScience ; 26(7): 107168, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456833

RESUMO

Tracheomalacia (TM) is a condition characterized by a weak tracheal cartilage and/or muscle, resulting in excessive collapse of the airway in the newborns. Current treatments including tracheal reconstruction, tracheoplasty, endo- and extra-luminal stents have limitations. To address these limitations, this work proposes a new strategy by wrapping an adhesive hydrogel patch around a malacic trachea. Through a numerical model, first it was demonstrated that a hydrogel patch with sufficient mechanical and adhesion strength can preserve the trachea's physiological shape. Accordingly, a new hydrogel providing robust adhesion on wet tracheal surfaces was synthesized employing the hydroxyethyl acrylamide (HEAam) and polyethylene glycol methacrylate (PEGDMA) as main polymer network and crosslinker, respectively. Ex vivo experiments revealed that the adhesive hydrogel patches can restrain the collapsing of malacic trachea under negative pressure. This study may open the possibility of using an adhesive hydrogel as a new approach in the difficult clinical situation of tracheomalacia.

4.
Heliyon ; 9(6): e17241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37360077

RESUMO

Persistence and coexistence of many pond-breeding amphibians depend on seasonality. Temperature, as a seasonal climate component, affects numerous physical and biological processes of pond-breeding amphibians. Satellite-derived land surface temperature (LST) is the radiative skin temperature of the land surface, which has received less attention in spatiotemporal seasonal habitat monitoring. The present study aims to evaluate the increasing and decreasing effects of LST trends at two levels: (1) habitat suitability and connectivity; (2) individual population sites and their longitudinal distribution (with increasing longitude). Habitat suitability modeling was conducted based on an ensemble species distribution model (eSDM). Using electrical circuit theory, the connectivity of interior and intact habitat cores was investigated. An average seasonal LST was prepared separately for each season from 2003 to 2021 and entered into Mann-Kendall (MK) analysis to determine the spatiotemporal effects of LST changes using the Z-Score (ZMK) at two confidence levels of 95 and 99%. Based on the results, in winter, 28.12% and 70.70% of the suitable habitat were affected by an increasing trend of LST at 95% and 99% confidence levels, respectively. The highest spatial overlap of the decreasing trend of LST with the suitable habitat occurred in summer and was 6.4% at the 95% confidence level and 4.2% at the 99% confidence level. Considering population site at 95% confidence interval, the increasing trend of LST was calculated to be 20.2%, 9.5%, 4.2%, and 6.3% of localities in winter, spring, summer, and autumn, respectively. At the 99% confidence level, these percentages reduced to 8.5%, 3.1%, 1%, and 1%, respectively. During winter and summer, based on the results of the longitudinal trend, an increasing trend of LST was observed in sites. Localities of Hatay and Iica village in Turkey experienced seasonally asynchronous climate change regimes. The approach used in this study allowed us to create a link between the life cycle and seasonal changes on a micro-scale (breeding sites) and macro-scale (distribution and connectivity). Findings of this paper can be effectively used by conservation managers to preserve S. infraimmaculata's metapopulation.

5.
ACS Biomater Sci Eng ; 9(2): 651-661, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36625682

RESUMO

Articular cartilage presents a mechanically sensitive tissue. Chondrocytes, the sole cell type residing in the tissue, perceive and react to physical cues as signals that significantly modulate their behavior. Hyaline cartilage is a connective tissue with high dissipative capabilities, able to increase its temperature during daily activities, thus providing a dynamic thermal milieu for the residing chondrocytes. This condition, self-heating, which is still chiefly ignored among the scientific community, adds a new thermal dimension in cartilage mechanobiology. Motivated by the lack of studies exploring this dynamic temperature increase as a potential stimulus in cartilage-engineered constructs, we aimed to elucidate whether loading-induced evolved temperature serves as an independent or complementary regulatory cue for chondrocyte function. In particular, we evaluated the chondrocytes' response to thermal and/or mechanical stimulation in two types of scaffolds exhibiting dissipation levels close to healthy and degenerated articular cartilage. It was found, in both scaffold groups, that the combination of dynamic thermal and mechanical stimuli induced superior effects in the expression of major chondrogenic genes, such as SOX9 and LOXL2, compared to either signal alone. Similar effects were also observed in proteoglycan accumulation over time, along with increased mRNA transcription and synthesis of TRPV4, and for the first time demonstrated in chondrocytes, TREK1 ion channels. Conversely, the chondrogenic response of cells to isolated thermal or mechanical cues was generally scaffold-type dependent. Nonetheless, the significance of thermal stimulus as a chondro-inductive signal was better supported in both studied groups. Our data indicates that the temperature evolution is necessary for chondrocytes to more effectively perceive and translate applied mechanical loading.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/metabolismo , Calefação , Cartilagem Articular/metabolismo
6.
Acta Biomater ; 158: 12-31, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638938

RESUMO

The drive to develop cartilage implants for the treatment of major defects in the musculoskeletal system has resulted in a major research thrust towards developing biomaterial devices for cartilage repair. Investigational devices for the restoration of articular cartilage are considered as significant risk materials by regulatory bodies and therefore proof of efficacy and safety prior to clinical testing represents a critical phase of the multidisciplinary effort to bridge the gap between bench and bedside. To date, review articles have thoroughly covered different scientific facets of cartilage engineering paradigm, but surprisingly, little attention has been given to the preclinical considerations revolving around the validation of a biomaterial implant. Considering hydrogel-based cartilage products as an example, the present review endeavors to provide a summary of the critical prerequisites that such devices should meet for cartilage repair, for successful implantation and subsequent preclinical validation prior to clinical trials. Considerations pertaining to the choice of appropriate animal model, characterization techniques for the quantitative and qualitative outcome measures, as well as concerns with respect to GLP practices are also extensively discussed. This article is not meant to provide a systematic review, but rather to introduce a device validation-based roadmap to the academic investigator, in anticipation of future healthcare commercialization. STATEMENT OF SIGNIFICANCE: There are significant challenges around translation of in vitro cartilage repair strategies to approved therapies. New biomaterial-based devices must undergo exhaustive investigations to ensure their safety and efficacy prior to clinical trials. These considerations are required to be applied from early developmental stages. Although there are numerous research works on cartilage devices and their in vivo evaluations, little attention has been given into the preclinical pathway and the corresponding approval processes. With a focus on hydrogel devices to concretely illustrate the preclinical path, this review paper intends to highlight the various considerations regarding the preclinical validation of hydrogel devices for cartilage repair, from regulatory considerations, to implantation strategies, device performance aspects and characterizations.


Assuntos
Cartilagem Articular , Hidrogéis , Animais , Hidrogéis/farmacologia , Cartilagem Articular/patologia , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos
7.
Biomacromolecules ; 23(12): 5007-5017, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379034

RESUMO

The surgical treatments of injured soft tissues lead to further injury due to the use of sutures or the surgical routes, which need to be large enough to insert biomaterials for repair. In contrast, the use of low viscosity photopolymerizable hydrogels that can be inserted with thin needles represents a less traumatic treatment and would therefore reduce the severity of iatrogenic injury. However, the delivery of light to solidify the inserted hydrogel precursor requires a direct access to it, which is mostly invasive. To circumvent this limitation, we investigate the approach of curing the hydrogel located behind biological tissues by sending near-infrared (NIR) light through the latter, as this spectral region has the largest transmittance in biological tissues. Upconverting nanoparticles (UCNPs) are incorporated in the hydrogel precursor to convert NIR transmitted through the tissues into blue light to trigger the photopolymerization. We investigated the photopolymerization process of an adhesive hydrogel placed behind a soft tissue. Bulk polymerization was achieved with local radiation of the adhesive hydrogel through a focused light system. Thus, unlike the common methods for uniform illumination, adhesion formation was achieved with local micrometer-sized radiation of the bulky hydrogel through a gradient photopolymerization phenomenon. Nanoindentation and upright microscope analysis confirmed that the proposed approach for indirect curing of hydrogels below the tissue is a gradient photopolymerization phenomenon. Moreover, we found that the hydrogel mechanical and adhesive properties can be modulated by playing with different parameters of the system such as the NIR light power and the UCNP concentration. The proposed photopolymerization of adhesive hydrogels below the tissue opens the prospect of a minimally invasive surgical treatment of injured soft tissues.


Assuntos
Hidrogéis , Nanopartículas , Adesivos , Materiais Biocompatíveis , Polimerização
8.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256051

RESUMO

During loading of viscoelastic tissues, part of the mechanical energy is transformed into heat that can locally increase the tissue temperature, a phenomenon known as self-heating. In the framework of mechanobiology, it has been accepted that cells react and adapt to mechanical stimuli. However, the cellular effect of temperature increase as a by-product of loading has been widely neglected. In this work, we focused on cartilage self-heating to present a 'thermo-mechanobiological' paradigm, and demonstrate how the coupling of a biomimetic temperature evolution and mechanical loading could influence cell behavior. We thereby developed a customized in vitro system allowing to recapitulate pertinent in vivo physical cues and determined the cells chondrogenic response to thermal and/or mechanical stimuli. Cellular mechanisms of action and potential signaling pathways of thermo-mechanotransduction process were also investigated. We found that co-existence of thermo-mechanical cues had a superior effect on chondrogenic gene expression compared to either signal alone. Specifically, the expression of Sox9 was significantly upregulated by application of the physiological thermo-mechanical stimulus. Multimodal transient receptor potential vanilloid 4 (TRPV4) channels were identified as key mediators of thermo-mechanotransduction process, which becomes ineffective without external calcium sources. We also observed that the isolated temperature evolution, as a by-product of loading, is a contributing factor to the cell response and this could be considered as important as the conventional mechanical loading. Providing an optimal thermo-mechanical environment by synergy of heat and loading portrays new opportunity for development of novel treatments for cartilage regeneration and can furthermore signal key elements for emerging cell-based therapies.


Assuntos
Condrócitos , Condrogênese , Sinalização do Cálcio , Condrócitos/metabolismo , Sinais (Psicologia) , Mecanotransdução Celular/fisiologia , Temperatura
9.
Soft Matter ; 17(29): 7038-7046, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34251015

RESUMO

Granular hydrogels with high stability, strength, and toughness are laborious to develop. Post-curing is often employed to bind microgels chemically and enhance mechanical properties. Here a unique strategy was investigated to maintain microgels together with a novel self-reinforced silk granular hydrogel composed of 10 wt% 20 kDa poly(ethylene glycol) dimethacrylate microgels and regenerated silk fibroin fibers. The principle is to use the swelling of microgels to concentrate the surrounding solution and regenerate silk fibroin in situ. Self-reinforcement is subsequently one of the added functions. We showed that silk fibroin in most compositions was homogeneously distributed and had successfully regenerated in situ around microgels, holding them together in a network-like structure. FTIR analysis revealed the presence of amorphous and crystalline silk fibroin, where 50% of the secondary structures could be assigned to strong ß-sheets. Swelling ratios, i.e. 10-45 vol%, increased proportionally with the microgel content, suggesting that mainly microgels governed swelling. In contrast, the elastic modulus, i.e. 58-296 kPa, increased almost linearly with silk fibroin content. Moreover, we showed that the precursor could be injected and cast into a given shape. Viscous precursors of various compositions were also placed side by side to create mechanical gradients. Finally, it was demonstrated that silk granular hydrogel could successfully be synthesized with other microgels like gelatin methacryloyl. Silk granular hydrogels represent, therefore, a novel class of self-reinforced hydrogel structures with tunable swelling and elastic properties.


Assuntos
Fibroínas , Hidrogéis , Conformação Proteica em Folha beta , Regeneração , Seda
10.
Curr Res Transl Med ; 69(3): 103299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34192658

RESUMO

In mature individuals, hyaline cartilage demonstrates a poor intrinsic capacity for repair, thus even minor defects could result in progressive degeneration, impeding quality of life. Although numerous attempts have been made over the past years for the advancement of effective treatments, significant challenges still remain regarding the translation of in vitro cartilage engineering strategies from bench to bedside. This paper reviews the latest concepts on engineering cartilage tissue in view of biomaterial scaffolds, tissue biofabrication, mechanobiology, as well as preclinical studies in different animal models. The current work is not meant to provide a methodical review, rather a perspective of where the field is currently focusing and what are the requirements for bridging the gap between laboratory-based research and clinical applications, in light of the current state-of-the-art literature. While remarkable progress has been accomplished over the last 20 years, the current sophisticated strategies have reached their limit to further enhance healthcare outcomes. Considering a clinical aspect together with expertise in mechanobiology, biomaterial science and biofabrication methods, will aid to deal with the current challenges and will present a milestone for the furtherance of functional cartilage engineering.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Animais , Humanos , Qualidade de Vida
11.
Macromol Rapid Commun ; 42(10): e2000660, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33834552

RESUMO

Attaching hydrogels to soft internal tissues is crucial for the development of various biomedical devices. Tough sticky hydrogel patches present high adhesion, yet with lack of injectability and the need for treatment of contacting surface. On the contrary, injectable and photo-curable hydrogels are highly attractive owing to their ease of use, flexibility of filling any shape, and their minimally invasive character, compared to their conventional preformed counterparts. Despite recent advances in material developments, a hydrogel that exhibits both proper injectability and sufficient intrinsic adhesion is yet to be demonstrated. Herein, a paradigm shift is proposed toward the design of intrinsically adhesive networks for injectable and photo-curable hydrogels. The bioinspired design strategy not only provides strong adhesive contact, but also results in a wide window of physicochemical properties. The adhesive networks are based on a family of polymeric backbones where chains are modified to be intrinsically adhesive to host tissue and simultaneously form a hydrogel network via a hybrid cross-linking mechanism. With this strategy, adhesion is achieved through a controlled synergy between the interfacial chemistry and bulk mechanical properties. The functionalities of the bioadhesives are demonstrated for various applications, such as tissue adhesives, surgical sealants, or injectable scaffolds.


Assuntos
Hidrogéis , Adesivos Teciduais , Adesivos , Polímeros , Medicina Regenerativa
12.
PLoS One ; 15(11): e0242432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206701

RESUMO

Climate change, as an emerging phenomenon, has led to changes in the distribution, movement, and even risk of extinction of various wildlife species and this has raised concerns among conservation biologists. Different species have two options in the face of climate change, either to adopt or follow their climatic niche to new places through the connectivity of habitats. The modeling of interpatch landscape communications can serve as an effective decision support tool for wildlife managers. This study was conducted to assess the effects of climate change on the distribution and habitat connectivity of the endangered subspecies of Asian black bear (Ursus thibetanus gedrosianus) in the southern and southeastern Iran. The presence points of the species were collected in Provinces of Kerman, Hormozgan, and Sistan-Baluchestan. Habitat modeling was done by the Generalized Linear Model, and 3 machine learning models including Maximum Entropy, Back Propagation based artificial Neural Network, and Support Vector Machine. In order to achieve the ensemble model, the results of the mentioned models were merged based on the method of "accuracy rate as weight" derived from their validation. To construct pseudo-absence points for the use in the mentioned models, the Ensemble model of presence-only models was used. The modeling was performed using 15 habitat variables related to climatic, vegetation, topographic, and anthropogenic parameters. The three general circulation models of BCC-CSM1, CCSM4, and MRI-CGCM3 were selected under the two scenarios of RCP2.6 and RCP8.5 by 2070. To investigate the effect of climate change on the habitat connections, the protected areas of 3 provinces were considered as focal nodes and the connections between them were established based on electrical circuit theory and Pairwise method. The true skill statistic was employed to convert the continuous suitability layers to binary suitable/unsuitable range maps to assess the effectiveness of the protected areas in the coverage of suitable habitats for the species. Due to the high power of the stochastic forest model in determining the importance of variables, this method was used. The results showed that presence/absence models were successful in the implementation and well distinguished the points of presence and pseudo-absence from each other. Based on the random forests model, the variables of Precipitation of Driest Quarter, Precipitation of Coldest Quarter, and Temperature Annual Range have the greatest impact on the habitat suitability. Comparing the modeling findings to the realities of the species distribution range indicated that the suitable habitats are located in areas with high humidity and rainfall, which are mostly in the northern areas of Bandar Abbas, south of Kerman, and west and south of Sistan-Baluchestan. The area of suitable habitats, in the MRI-CGCM3 (189731 Km2) and CCSM4 (179007 Km2) models under the RCP2.6 scenario, is larger than the current distribution (174001 Km2). However, in terms of the performance of protected areas, the optimal coverage of the species by the boundary of the protected areas, under each of the RCP2.6 and RCP8.5 scenarios, is less than the present time. According to the electric circuit theory, connecting the populations in the protected areas of Sistan-Baluchestan province to those in the northern Hormozgan and the southern Kerman would be based on the crossing through the heights of Sistan-Baluchestan and Hormozgan provinces and the plains between these heights would be the movement pinch points under the current and future scenarios. Populations in the protected areas of Kerman have higher quality patch connections than that of the other two provinces. The areas such as Sang-e_Mes, Kouh_Shir, Zaryab, and Bahr_Aseman in Kerman Province and Kouhbaz and Geno in Hormozgan Province can provide suitable habitats for the species in the distribution models. The findings revealed that the conservation of the heights along with the caves inside them could be a protective priority to counteract the effects of climate change on the species.


Assuntos
Distribuição Animal/fisiologia , Conservação dos Recursos Naturais/métodos , Ursidae/fisiologia , Animais , Animais Selvagens , Mudança Climática , Ecossistema , Irã (Geográfico) , Modelos Teóricos
13.
Soft Matter ; 16(15): 3769-3778, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239014

RESUMO

Developing hydrogels with optimal properties for specific applications is challenging as most of these properties, such as toughness, stiffness, swelling or deformability, are interrelated. The improvement of one property usually comes at the cost of another. In order to decouple the interdependence between these properties and to extend the range of material properties for hydrogels, we propose a strategy that combines composite and microgel approaches. The study focuses first on tailoring the swelling performance of hydrogels while minimally affecting other properties. The underlying principle is to partially substitute some of the hydrogels with pre-swollen microgels composed of the same materials. Swelling reductions up to 45% were obtained. Those granular hydrogels were then reinforced with nano-fibrillated cellulose fibres obtaining hybrid granular materials to improve their toughness and to further reduce their initial swelling. Four different structures of neat, granular and composite hydrogels including 63 different hydrogel compositions based on 20 kDa poly(ethylene glycol)dimethacrylate showed that the swelling ratio could be tailored without significantly affecting elastic modulus and deformation performance. The results explain the role of the PEGDM precursors on the swelling of the microgels as well as the influence of the microgel and fibre contents on the final properties. Moreover, the precursors of hydrogels with similar mechanical or swelling performance were injectable with a wide range of complex viscosities from 0.1 Pa s to over 1000 Pa s offering new opportunities for applications in confined as well as in unconfined environments.

14.
Biomacromolecules ; 21(1): 240-249, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596075

RESUMO

Rapid adhesion between tissue and synthetic materials is relevant to accelerate wound healing and to facilitate the integration of implantable medical devices. Most frequently, tissue adhesives are applied as a gel or a liquid formulation. This manuscript presents an alternative approach to mediate adhesion between synthetic surfaces and tissue. The strategy presented here is based on the modification of the surface of interest with a thin polymer film that can be transformed on-demand, using UV-light as a trigger, from a nonadhesive into a reactive and tissue adhesive state. As a first proof-of-concept, the feasibility of two photoreactive, thin polymer film platforms has been explored. Both of these films, colloquially referred to as polymer brushes, have been prepared using surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate (HEMA). In the first part of this study, it is shown that direct UV-light irradiation of PHEMA brushes generates tissue-reactive aldehyde groups and facilitates adhesion to meniscus tissue. While this strategy is very straightforward from an experimental point of view, a main drawback is that the generation of the tissue reactive aldehyde groups uses the 250 nm wavelength region of the UV spectrum, which simultaneously leads to extensive photodegradation of the polymer brush. The second part of this report outlines the synthesis of PHEMA brushes that are modified with 4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoic acid (TFMDA) moieties. UV-irradiation of the TFMDA containing brushes transforms the diazirine moieties into reactive carbenes that can insert into C-H, N-H, and O-H bonds and mediate the formation of covalent bonds between the brush surface and meniscus tissue. The advantage of the TFMDA-modified polymer brushes is that these can be activated with 365 nm wavelength UV light, which does not cause photodegradation of the polymer films. While the work presented in this manuscript has used silicon wafers and fused silica substrates as a first proof-of-concept, the versatility of SI-ATRP should enable the application of this strategy to a broad range of biomedically relevant surfaces.


Assuntos
Metacrilatos/química , Adesivos Teciduais/química , Adesivos Teciduais/efeitos da radiação , Animais , Azirinas , Benzoatos , Bovinos , Menisco/efeitos dos fármacos , Menisco/efeitos da radiação , Metano/análogos & derivados , Metano/química , Processos Fotoquímicos , Polimerização , Dióxido de Silício/química , Propriedades de Superfície , Raios Ultravioleta
15.
ACS Appl Mater Interfaces ; 11(43): 39662-39671, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31565916

RESUMO

Development of mechanically durable and biologically inductive hydrogels is a major challenge for load-bearing applications such as engineered cartilage. Dissipative capacity of articular cartilage is central to its functional behavior when submitted to loading. While fluid frictional drag is playing a significant role in this phenomenon, the flow-dependent source of dissipation is mostly overlooked in the design of hydrogel scaffolds. Herein, we propose an original strategy based on the combination of fluidic and polymeric dissipation sources to simultaneously enhance hydrogel mechanical and mechanobiological performances. The nondestructive dissipation processes were carefully designed by hybrid cross-linking of the hydrogel network and low permeability of the porous structure. It was found that intrachain and pore water distribution in the porous hydrogels improves the mechanical properties in high water fractions. In contrast to widely reported tough hydrogels presenting limited load support capability at low strain values, we obtained stiff and dissipative hydrogels with unique fatigue behavior. We showed that the fatigue resistance capability is not a function of morphology, dissipation level, and stiffness of the viscoelastic hydrogels but rather depends on the origin of the dissipation. Moreover, the preserved dissipation source under mechanical stimulation maintained a mechanoinductive niche for enhancing chondrogenesis owing to fluid frictional drag contribution. The proposed strategy can be widely used to design functional scaffolds in high loading demands for enduring physiological stimuli and generating regulatory cues to cells.


Assuntos
Condrócitos/metabolismo , Condrogênese , Hidrogéis/química , Teste de Materiais , Tecidos Suporte/química , Linhagem Celular , Condrócitos/citologia , Humanos , Porosidade
16.
ACS Appl Mater Interfaces ; 10(45): 38692-38699, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30335947

RESUMO

Despite the development of hydrogels with high mechanical properties, insufficient adhesion between these materials and biological surfaces significantly limits their use in the biomedical field. By controlling toughening processes, we designed a composite double-network hydrogel with ∼90% water content, which creates a dissipative interface and robustly adheres to soft tissues such as cartilage and meniscus. A double-network matrix composed of covalently cross-linked poly(ethylene glycol) dimethacrylate and ionically cross-linked alginate was reinforced with nanofibrillated cellulose. No tissue surface modification was needed to obtain high adhesion properties of the developed hydrogel. Instead, mechanistic principles were used to control interfacial crack propagation. Comparing to commercial tissue adhesives, the integration of the dissipative polymeric network on the soft tissue surfaces allowed a significant increase in the adhesion strength, such as ∼130 kPa for articular cartilage. Our findings highlight the significant role of controlling hydrogel structure and dissipation processes for toughening the interface. This research provides a promising path to the development of highly adhesive hydrogels for tissues repair.


Assuntos
Hidrogéis/química , Hidrogéis/farmacologia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Alginatos/química , Alginatos/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Bovinos , Celulose/química , Celulose/farmacologia , Menisco/efeitos dos fármacos , Metacrilatos/química , Metacrilatos/farmacologia , Nanoestruturas/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...